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Abstract Chemical equilibrium is usually discussed via a thermodynamic treatment
but this does not automatically provide enough mathematical tools to be successful. A
complementary mathematical approach was developed in a series of previous papers
to reveal the inner logic in equilibrium shift for gaseous systems. Le Chatelier’s prin-
ciple is reconsidered with this approach and a system has been developed in order to
fully address the application of this principle and the dangers of using it without due
consideration. In this study it is demonstrated that, more often than not, real concep-
tual understanding can only be achieved through mathematical derivations which help
to build a more rigorous and abstract understanding. The image of chemistry can be
improved by introducing more mathematics into elementary chemistry. Real chemical
education delves into curricular contents and offers deep insight into chemistry which
provides crucial assistance to chemical teachers and benefits students.
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1 Introduction

Le Chatelier’s principle provided a remarkable breakthrough in scientific develop-
ment and continues to have a great influence. Every scientist, whether he is a chemist,
physicist, mathematician, or biologist will be familiar with it or its counterparts in
the respective fields. For example in biology there is the self-regulatory function of
the organism and in physics there are the induced current theorem of Lenz, Newton’s
first and third laws of motion, which all involve reluctance to change, and both action
and reaction. The perceived advantage of Le Chatelier’s principle is that it can be
used to solve problems without excessive mathematics. Le Chatelier’s principle is
demonstrated to be “correct” via simple numerical evaluation or elementary mathe-
matical reasoning [1] for chemical systems under constant volume where the principle
is less problematic. More theoretical presentations are the thermodynamically derived
of Van ’t Hoff equation [2,3], and the relationship between Gibbs energy and pres-
sure (Clausius–Clapeyron equation) [4] which are in some ways consistent with Le
Chatelier’s principle. However thermodynamics itself does not automatically provide
enough mathematical tools for the analysis of complicated systems. Several negative
effects associated with Le Chatelier’s principle [5,6] have been identified [7–12]. The
inclusion of Le Chatelier’s principle causes problems because it can be, and often is,
used in situations for which it is not applicable, especially with gaseous systems at
constant temperature T and pressure P. Unfortunately it is difficult to predict when the
principle is not applicable. Cheung [5] concluded from these negative effects that Le
Chatelier’s principle was vague and has no value for chemistry other than historical
interest. Although we agree with this view to some extent, it is relevant to say that
the principle retains relevance but must be used correctly. However, it is relevant to
point out here that Le Chatelier’s principle creates the prevailing misunderstanding
that adding a reactant in a closed systemwill always displace the chemical equilibrium
to reduce the amount of the added reactant and will raise the conversion ratio of other
reactants, under any conditions. This is the main concern of the present paper.

Although the problems with the rigor of Le Chatelier’s principle have been cor-
rectly identified, these problems with Le Chatelier’s principle have not been raised
in chemistry monographs and indeed student chemistry courses. One reason is that
the scientists are often unaware of the achievements of their colleagues [13] and are
not aware of, or ignore, published papers that show the failures of Le Chatelier’s
principle. Still another reason is that most chemists like the style of Le Chatelier’s
principle because it provides conceptual understanding, albeit flawed [14], without
mathematics. Thus, treatments in textbooks often use specific examples with simple
mathematical evaluations that give correct answers but which conceal the problems
in Le Chatelier’s principle. The lacking of theoretical rigor in the treatments make the
relevant presentations lack generality. Thus, in order to solve the problems with regard
to Le Chatelier’s principle, a more general and theoretical presentation for chemical
equilibrium is needed to keep up with the level of modern science development. In
this work we first present in Sects. 2 and 3 the problems in Le Chatelier’s principle
and then, in Sect. 4 together with the solutions provided in Sects. 2 and 3, develop a
theoretical system, simple enough to be suitable at college level to describe chemical
equilibrium and complementary to our previous work [15–17]. It can be seen that this
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theoretical approach is developed differently from that suggested by simple logical
analysis in elementary chemistry. Section 4 is mainly concerned with the ideal gas
system at constant temperature T and pressure P but can be extended to more gen-
eral conditions. The system uses mathematics rather than thermodynamics and can
be generally valid in problems where Le Chatelier’s principle is not applicable. The
difficulties in understanding chemical equilibrium can thus be minimized since more
mathematical tools are offered.

In this work it is shown not only that numerical evaluation is a very helpful tool in
chemistry presentation, but also that a thorough theoretical investigation via math-
ematics is necessary in understanding chemistry as is true for any other science
subjects [18–21]. Economics has benefited considerably by introducing mathemat-
ical approaches demonstrated from the Nobel laureates Maskin, Diamond, Roth and
Shapley [22]. In the sameway understanding of chemical equilibrium can be increased
greatly when a mathematical approach is introduced [10,23]. We have noticed the
belief that theories are artificial [24] and in evolution [25] and therefore that rote
learning is preferable in which remembering experimental results is sometimes better
than meaningful learning [24,26]. However, the implication of this work is to advo-
cate introducing more mathematics within chemical contents and to enhance chemical
logic in chemistry. The influence of mathematics on chemistry has grown over the
years. However the relationship between chemistry and mathematics is not stressed
in elementary chemistry as much as it should be. A significant minority of chemists
reject theoretical and mathematical treatments considering that concept understand-
ing is preferable and thereby they can avoid any level of mathematics. Elementary
chemistry is still mainly presented in a traditional way where chemistry is presented
taxonomically. Although some chemists continue to consider chemistry as a subject
that needs to be grasped by rote learning, it has been noticed by many that such a
philosophy causes serious educational problems. The oversimplified presentations in
introductory courses usually cause misunderstandings that need to be corrected at
a later time involving considerable effort [14]. This situation needs to be changed
[27,28]. Chemical concepts developed by mathematics can only be understood by
mathematical presentation. Elementary chemistry can be presented with more rigor
and more logic. In this work it is shown that there are examples where real under-
standing can only be achieved through mathematical analysis and that conceptual
understanding without mathematics often proves superficial.

2 Limitations of Le Chatelier’s principle demonstrated by changes in
conjugated variables

Le Chatelier’s principle is usually interpreted as meaning that an equilibrium will be
displaced to counteract influence applied from outside. However, this statement is
vague and ambiguous [6,29] since the word counteract can refer to the action or the
effect caused by that action. For that reason the principle might be more precisely
expressed as the following: that an equilibrium would shift to always counteract the
action; or alternatively to always counteract the effect caused by that action. But both
statements cannot be true and these precise statements do not remove the ambiguity
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as is demonstrated below [16]. Subsequently we will present a general mathematical
treatment of equilibrium systems in Sect. 4.

A system can be described with pairs of conjugated variables such as temperature
T and the amount of heat absorbed q; or pressure P and volume V. If no equilibrium
exists, then when applying an action such as changing T or P, there will be an effect of
the action, i.e. a corresponding change in the conjugated variables q or V. Conversely,
changes in the variables q or V will lead to changes in T or P.

If there is a chemical equilibrium (e.g. as represented by Eq. 1) which exists in a
system, then if decreasing P or increasing T is taken as an action, the equilibrium will
shift to counteract this action, and counteract the change in P or T by a displacement
to the side of the chemical equation with a larger sum of coefficients or in the direction
of absorbing heat. Thus, in this case the equilibrium is indeed shifted to reduce the
action, i.e. to reduce the decrease in P or increase in T, conforming to the statement of
Le Chatelier’s principle that an equilibrium shift always counteracts the action. On the
other hand, the effect of decreasing P or increasing T is to increase V or the absorbed
heat q. The equilibrium shifted to the sidewith a larger sumof coefficients enhances the
effect of increasing V while the equilibrium shifted in the direction of absorbing heat
increases the heat q absorbed by the system, and therefore both shifts will contradict
the statement of Le Chatelier’s principle that an equilibrium shift always counteracts
the effect caused by that action.

On the other hand, ifwe take an increase inVor q as the action and the corresponding
decrease in P or increase in T as the effect of the corresponding action, then the
equilibriumwill shift to counteract the effect but enhance the action, thus contradicting
Le Chatelier’s principle that an equilibrium shift always counteracts the action. The
validity of the above discussion can also be demonstrated by using phase equilibria
[6,16] instead of chemical equilibria [8].

By a mathematical [15,17] or a thermodynamical [8] treatment, a universal law
(Theorem 3 in [15]) can be postulated to replace Le Chatelier’s principle which
accounts for the above mentioned facts i.e. that the equilibrium is shifted to reduce the
change in intensive variable while enhancing the change in extensive variable when
these are a pair of conjugated variables [8]. It can be noted that the philosophy in this
new law from mathematics is quite different from that expressed in the traditional
statement of Le Chatelier’s principle. This mathematical result can be easily verified
using the above mentioned examples and will be analyzed mathematically in the last
part of this paper according to previous work [15–17] which is somewhat different
from that presented in Ref. [8]. The results from the above discussions which are not
compatible with the traditional statement of Le Chatelier’s principle are summarized
in Table 1. It can be seen from this table that the rigorous mathematical law involving
intensive and extensive variables remains valid under all circumstances.

3 Limitations of the Le Chatelier’s principle demonstrated by numerical
calculations

The above example is not the only case in which the logic of Le Chatelier’s princi-
ple proves to be problematic. Most chemists still think that the equilibrium will be
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Table 1 The equilibrium shift for chemical or phase equilibrium with respect to changes in P and V, or T
and q

No. Action Effect Statement of Le Chatelier’s
principle

Theorem 3

1 P or T V or q Counteracts action � Counteracts change in intensive
variable �

Counteracts effect × Enhances change in extensive
variable �

2 V or q P or T Counteracts action × Counteracts change in intensive
variable �

Counteracts effect � Enhances change in extensive
variable �

� and × signify whether Le Chatelier’s principle or Theorem 3 is consistent or not with the experimental
data

displaced to reduce the added species in all situations and as a result when planning
experiments often trying by test to add a cheaper reactant in order to increase the
conversion ratio of the more expensive reactants [9]. This is in fact only applicable
for reactions involving liquids where the volume of the system can be considered as
constant and it is not true for more complicated cases involving gaseous systems at
constant T and P. This section shows that numerical calculations are helpful in chem-
istry presentations. It can be shown from Eq. 1 that equilibrium can be shifted to
produce more of the added species and reduce the conversion ratio of other reactants.
Suppose Kx, an equilibrium constant expressed in mole fractions, is 24.46 at a certain
temperature and pressure for the Haber reaction given in Eq. 1, row 1, with initial
conditions, given in row 2, of 1 mole of H2, w moles of N2 and none of the product
NH3. When the reaction progresses with the reaction extent ζ, then row 3 or row 4
is obtained where ν is the coefficient. It is an exothermal reaction indicated by |q| in
row 1. Row 5 is the equilibrium condition expressed with Kx and its corresponding
reaction quotient Qx. Results from calculations with w = 1 and 2 in Eq. 1 are listed in
Table 2. All symbols used in this paper are listed in “Appendix 4”.

N2(g) + 3H2(g) = 2NH3(g) + |q|
w 1.00 0.00

w − ∣
∣νN2

∣
∣ ζ 1 − ∣

∣νH2

∣
∣ζ νNH3ζ KX = 24.46

nN2 = w − ζ nH2 = 1 − 3ζ nNH3 = 2ζ

x2NH3

xN2 · x3H2

= n2NH3

nN2 · n3H2

(nN2 + nH2 + nNH3)
2 = Kx (1)

The reaction extent ζ at equilibrium can be calculated from Eq. 1. The calculations
can be accomplished by the bisection method where ζ takes a trying value from 0 to
1/3 [16]. Row No. 1 in Table 2 shows the calculated results for equilibrium when w
is 1 mole. Row No. 2 characterizes the state when 1 more mole of N2 is added into
this equilibrium if the reaction were frozen. The results from the new equilibrium
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Table 2 Calculations with Eq. 1 for w = 1 and 2

No. w ζ nN2 nH2 nNH3 nT xN2 xH2 xNH3

1 1 0.2330 0.7670 0.3009 0.4661 1.5340 0.5000 0.1962 0.3038

2 2 0.2330 1.7670 0.3009 0.4661 2.5340 0.6973 0.1182 0.1839

3 2 0.2284 1.7716 0.3147 0.4569 2.5432 0.6966 0.1237 0.1797

The data in rows of No. 1 and 3 are equilibrium values calculated for w = 1 and 2, respectively; row of No.
2 gives the result when 1 more mole of N2 is added in the equilibrium system represented by row of No. 1
while the reaction is frozen at ζ = 0.2330

for w = 2 are shown by row No. 3. As can been seen by comparing rows No. 2
and No. 3 in Table 2, the added N2 does not move the new equilibrium forward, but
moves it backward to produce more added species as the reaction extent is reduced
(ζ3 − ζ2 = 0.2284 − 0.2330 < 0) and both nN2 and nH2 are increased and nNH3 is
decreased (rows No. 2 and No. 3), i.e. as N2 is added, the conversion ratio of H2 is
decreased and more N2 is produced by the equilibrium shift. Thus, the logic of the
traditional statement of Le Chatelier’s principle is not always correct.

By the analysis given above, it can be concluded that Le Chatelier’s principle cannot
be applied in the example represented byEq. 1, since the concentrations for bothN2 and
H2 are affected by the addition [5].When 1mole ofN2 is added xN2 is increased by 0.5–
0.6973 from rows No. 1 to 2 of Table 2, requiring a forward reaction to reduce xN2 ;

1

but that rise could not be taken in isolation as xH2 is reduced by 0.1962–0.1182 from
rows No. 1 to 2, requiring a backward reaction.2 The latter were dominant since the
coefficient for N2 in Eq. 1 is 1 and for H2 is 3.3 Even this “conceptual understanding”
cannot be achieved without arithmetical analysis. However this simple reasoning is
not helpful in developing a more general theoretical approach since the increase in
total number of moles nT by the addition affects the mole fractions for all species but
not xH2 alone.

As can be seen from Table 2 the concentration of N2 with xN2 increases by 0.5–
0.6973 from row No. 1 to 2 in Table 2 when 1 mole of N2 is added. The equilibrium
shift decreases this increase and initiates a change by 0.6973 to 0.6966 from row
No. 2 to 3, consistent with Theorem 3 in [15] while shows a backward reaction can
reduce the concentration of N2 as pointed out in the footnote. However, the final
equilibrium concentration increased from the old equilibrium concentration by 0.5 to
0.6966 from row No. 1 to 3, consistent with Theorem 4 in [15] which states that the
new equilibrium concentration cannot be lower than the previous one for the added
species. This concept in Theorem 4 can only be taught vaguely without mathematical
analysis.

The concentration of NH3 xNH3 decreases by 0.3038 to 0.1839 from row No. 1 to
2 in Table 2 when 1 mole of N2 is added. However, as can be seen from row No. 3 of

1 This argument was adopted by those who defend Le Chatelier’s principle but it is incomplete since in the
actual reaction of Eq. 1 a backward reaction can also reduce the concentration of N2 by increasing nT.
2 Indeed in such reactions, it is impossible for only one mole fraction to change.
3 But without a detailed mathematical analysis, it cannot explain why this effect is not dominant when
w < 1. A forward reaction instead of a backward reaction will be initiated by adding N2 if w < 1 in Eq. 1.
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the Table 2 the equilibrium shifts further to change the concentration to 0.1797, thus a
decrease rather than an increase. The result contradicts with Le Chatelier’s principle
but does not contradict with Theorem3 since Theorem 3 refers to conjugated variables.
xN2 and the number of moles of N2, nN2 , are conjugated variables but xNH3 and nN2

are not. Conjugated variables are discussed further in “Appendix 3”.

4 A theoretical solution to the dilemma of Le Chatelier’s principle

4.1 Background information

The numerical calculations in the above section show the problems with the applica-
tions of Le Chatelier’s principle. Solving a problem numerically does not necessarily
mean understanding the chemistry. It is not sufficient in scientific analysis to demon-
strate theories only with specific examples involving numerical calculations. It is more
useful to obtain a general understanding with theoretical analysis. A simple analysis
[5] shows that the addition of N2 at constant T and P will produce more N2 because
of the dilution of H2 resulting from the addition. But it will be clear that this expla-
nation does not help much in developing a more systematic mathematical method
[15–17].

The added j increases both nj and nT by dnj in xj = nj/nT and in the denominator
of xi = ni/nT of the expression of Qx in Eq. 3. It should be noted that the change in
nj only affects xj but the change in nT affects xi for all i. The effects on Qx of both the
changes in nj and nT need to be considered in a more rigorous and general analysis.
Rigorous and general understanding are the real aims for a higher level of pedagogy
and the goal of scientific research. In order to achieve this aim, it is necessary to start
with the general equation for chemical equilibrium

0 =
N

∑

i=1

vi Ai (2)

where Ai represents the chemical species present in the system. vi is the coefficient of
species Ai in the balanced reaction and is positive for product and negative for reactant.
Note that when referring to a reactant, i = r; and to a product i=p. Equation 2 conforms
to this convention. N is the total number of species in the reacting system. The equal
sign is obligatory to balance the numbers of each element contained in reactant and
product. A general form of the reaction quotient Qx with respect to the mole fraction
xi with species Ai in Eq. 2 is defined as Eq. 3.

Qx =
N

∏

i=1

xνi
i =

∏N

i=1
nνi
i

n�ν
T

= n−�ν
T

N
∏

i=1

nνi
i (3)

where ni is the number of moles of species Ai and n0i is its initial value. nT is the
total number of moles in the system. � ν is the sum of all the coefficients νi in the
chemical equation. Although Qx is not directly related to T and P from Eq. 3, it can be
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shown from thermodynamics that the equilibrium value of Qx for an ideal gas system
at constant T and P is a constant and it is indicated byKx.When the reaction quotient is
expressed in partial pressures, Qp is used and the corresponding equilibrium constant
is Kp. It can be shown that [15]

nT
Qx

(
∂Qx

∂ζ

)

ni

= nT
Qx

(
∂Qx

∂ζ

)

n0i

= nT

[(
N

∑

i=1

ν2i

ni

)

− (�ν)2

nT

]

=
⎡

⎣nT

(
N

∑

i=1

ν2i

ni

)

−
(

N
∑

i=1

νi

)2⎤

⎦ (4)

It can be proved [15] that

(
∂Qx

∂ζ

)

ni

≥ 0 (5)

In chemistry Eq. 2 is usually written as Eq. 6.

Nr∑

i=1

∣
∣vri

∣
∣Ari =

Np
∑

i=1

vpi Api (6)

where r indicates reactant and p product; Nr and Np are the total number of reactants
and products, respectively. The meaning within the mathematical inequality Eq. 5 [15]
is that the forward reaction will increase Qx and the backward reaction decrease it,

i.e. that
(

∂Qx
∂ζ

)

ni
> 0 is the general formula fitting a majority of problems. It is true

that under special conditions Qx is unchanged by the forward or backward reaction

and thus
(

∂Qx
∂ζ

)

ni
= 0 but this situation is very rare since from Eq. 15 it can be shown

that it only occurs when all the initial moles of the gaseous species are in the same
proportion as their coefficients in the chemical reaction and also that there are gaseous
species only on one side of the equation while on the other side there are solid or liquid
species [15].

Proof of Eq. 5
Equation 4 can be rewritten as

(
∂Qx

∂ζ

)

ni

= Qx

nT

⎡

⎣nT

N
∑

i=1

ν2i

ni
−

(
N

∑

i=1

νi

)2⎤

⎦

= Qx

nT

⎡

⎣

(
N

∑

i=1

ni

)
N

∑

i=1

ν2i

ni
−

(
N

∑

i=1

νi

)2⎤

⎦ (7)
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On expanding

(
N

∑

i=1

ni

)
N

∑

j=1

ν2j

n j
= ν21 + n1

ν22

n2
+ n1

ν23

n3
+ n1

ν24

n4
+ · · · + n1

ν2N

nN

+n2
ν21

n1
+ ν22 + n2

ν23

n3
+ n2

ν24

n4
+ · · · + n2

ν2N

nN

+n3
ν21

n1
+ n3

ν22

n2
+ ν23 + n3

ν24

n4
+ · · · + n3

ν2N

nN

+n4
ν21

n1
+ n4

ν22

n2
+ n4

ν23

n3
+ ν24 + · · · + n4

ν2N

nN· · ·
+nN

ν21

n1
+ nN

ν22

n2
+ nN

ν23

n3
+ nN

ν24

n4
+ · · · + ν2N (8)

Rearrange the right hand side of Eq. 8 by row

(
N

∑

i=1

ni

)
N

∑

j=1

ν2j

n j
=

⎛

⎝v21 + n1

N
∑

j>1

ν2j

n j

⎞

⎠ +
⎛

⎝n2

j<2
∑

j=1

ν2j

n j
+ v22 + n2

N
∑

j>2

ν2j

n j

⎞

⎠

+
⎛

⎝n3

j<3
∑

j=1

ν2j

n j
+ v23 + n3

N
∑

j>3

ν2j

n j

⎞

⎠

+
⎛

⎝n4

j<4
∑

j=1

ν2j

n j
+ v24 + n4

N
∑

j>4

ν2j

n j

⎞

⎠ + · · · +
⎛

⎝nN

N−1
∑

j=1

ν2j

n j
+v2N

⎞

⎠

=
N

∑

i=2

ni

j<i
∑

j=1

ν2j

n j
+

N
∑

i=1

v2i +
N−1
∑

i=1

ni

N
∑

j>i

ν2j

n j
(9)

Or by column

(
N

∑

i=1

ni

)
N

∑

j=1

ν2j

n j
=

(

ν21

n1

N
∑

i>1

ni + v21

)

+
(

ν22

n2

N
∑

i>2

ni + v22 + ν22

n2

i<2
∑

i=1

ni

)

+
(

ν23

n3

N
∑

i>3

ni + v23 + ν23

n3

i<3
∑

i=1

ni

)

+
(

ν24

n4

N
∑

i>4

ni + v24 + ν24

n4

i<4
∑

i=1

ni

)

+ · · · +
⎛

⎝ν2N + ν2N

nN

N−1
∑

j=1

n j

⎞

⎠

=
N−1
∑

j=1

ν2j

n j

N
∑

i> j

ni +
N

∑

i=1

v2i +
N

∑

j=2

ν2j

n j

i< j
∑

i=1

ni (10)
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Since

N
∑

i=2

ni

j<i
∑

j=1

ν2j

n j
=

N−1
∑

j=1

ν2j

n j

N
∑

i> j

ni (11)

N−1
∑

i=1

ni

N
∑

j>i

ν2j

n j
=

N
∑

j=2

ν2j

n j

i< j
∑

i=1

ni (12)

Equation 11 accounts for the lower triangle in Fig. 1 and Eq. 12 accounts for the
upper triangle. With Eqs. 11 and 12, we obtain

(
N

∑

i=1

ni

)
N

∑

j=1

ν2j

n j
=

N
∑

i=2

ni

j<i
∑

j=1

ν2j

n j
+

N
∑

i=1

v2i +
N−1
∑

i=1

ni

N
∑

j>i

ν2j

n j

=
N−1
∑

j=1

ν2j

n j

N
∑

i> j

ni +
N

∑

i=1

v2i +
N−1
∑

i=1

ni

N
∑

j>i

ν2j

n j

=
N

∑

i=1

v2i +
N−1
∑

j=1

N
∑

i> j

ni
ν2j

n j
+

N−1
∑

i=1

N
∑

j>i

ni
ν2j

n j

=
N

∑

i=1

v2i +
N−1
∑

i=1

N
∑

j>i

n j
ν2i

ni
+

N
∑

i=1

N
∑

j>i

ni
ν2j

n j

=
N

∑

i=1

v2i +
N−1
∑

i=1

N
∑

j>i

n2jν
2
i + n2i ν

2
j

ni n j
(13)

(
N

∑

i=1

νi

)2

=
N

∑

i=1

v2i + 2
N−1
∑

i=1

N
∑

j>i

νiν j (14)

Inserting Eqs. 13 and 14 into Eq. 7 we obtain Eq. 15.

(
∂Qx

∂ζ

)

ni

= Qx

nT

⎡

⎣

(
N

∑

i=1

ni

)
N

∑

i=1

ν2i

ni
−

(
N

∑

i=1

νi

)2⎤

⎦

= Qx

nT

N
∑

i=1

N
∑

j>i

(niν j − n jνi )
2

nin j
≥ 0 (15)

Equation 5 is an important result in chemical equilibrium and it signifies that the
forward reaction will increase Qx and the backward reaction decrease it. The main
ideas in the proof are summarized in Fig. 1 and Theorem 1 [15] is obtained from
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Fig. 1 An outline showing the main principles within the proof of Eq. 5. Equation 11 is represented by the
lower triangle and Eq. 12 by the upper

Eq. 5. If i = ri and j = pj there will be non-zero terms with
(

nri vp j − n p j vri
)2 =

(

nri vp j + n p j

∣
∣vri

∣
∣
)2

> 0 in Eq. 15 which is exactly characterized by Theorem 1 since
there are gaseous species on both sides of the chemical equation [15]. Still another
Proof of Theorem 1 with gaseous species on both sides of the chemical equation is
given in “Appendix 1”.

This represents a significant difference between mathematical chemistry and pure
mathematics. Equation 15 is mathematically wrong but chemically correct since either

Qx or ni can be negative in mathematics which allows
(

∂Qx
∂ζ

)

ni
to be less than zero

while in chemistry both Qx and ni must both be positive. If the initial mole numbers
of all products are zero, then Eq. 15′ can be proved from Eq. 15 [15].
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nT
Qx

(
∂Qx

∂ζ

)

ni

=
∑

r

∑

r ′>r

(

νr n0r ′ − νr ′n0r
)2

nrnr ′
+

∑

r

∑

p

(

n0r
)2

ν2p

nrn p
+

∑

i

∑

l

niν2l
nl

(15′)

=
∑

r

∑

r ′>r

(

νr n0r ′ − νr ′n0r
)2

nrnr ′
+

∑

p

νp

(
∑

r

n0r − νrζ

ζ
+ ζ

∑

r

ν2r

nr

)

+
∑

i

∑

l

niν2l
nl

≥ 0

In Eq. 15′, i is the inert species while l is a general index for any species. Theorem 1
in Ref. [15] is restated in the following section with some modifications assimilating
the discussed points discussed there.

Theorem 1 (a) Qx cannot be changed in a reaction if the ratio of the initial number
of moles of all the species is equal to the ratio of the coefficients of all those species.
(b) Otherwise, the forward reaction will increase Qx and the backward reaction will
decrease Qx . Qx is the reaction quotient expressed in mole fractions.

Corollary i Qx does not change when a reaction is proceeded forward or backward

only when the equation
n0k
n0i

= vk
vi

is valid for all species presented in the equilibrium.

Corollary ii (a) cannot occur when there are gaseous species on both sides of the
chemical equation.

Corollary iii (a) cannot occur when there are inert gaseous species present.

The other aspects of Theorem 1 have been detailed in previous work [15,16]. A
mathematical Proof for Theorem 1 is necessary since it cannot be obtained intuitively
because the changes in the numerator and the denominator of Qx in Eq. 3 caused by the
equilibrium shift will always change Qx in opposite directions independent of whether
�ν > 0 or �ν < 0, or whether the shift refers to a forward or backward reaction. For

example, a forward reaction increases np and decreases nr thus
N∏

i=1
nνi
i is increased

(Eq. 3). The forward reaction also increases n�ν
T , the denominator of Qx if �ν > 0,

i.e. nT is increased as is the denominator of Qx which makes Qx decrease. If �ν < 0
the forward reaction decreases nT but still increases the denominator n�ν

T in Eq. 3 and
therefore decreases Qx . Thus the forward reaction increases both the numerator and
denominator of Qx under any conditions and these increases will have opposite effects
on Qx and therefore it is impossible to establish intuitively which effect is dominant.
This conclusion is also valid for the backward reaction. These two opposite effects
discussed above are also reflected on the right side of Eq. 7 by the positive and negative
terms. This discussion concerning the numerator and denominator of Qx is also useful
as shown below for Theorem 2.

Only with mathematics can it be made clear that the effect on the numerator rep-
resented in Eq. 7 is dominant. Using Theorem 1 it is possible to cover all the parts
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of equilibrium theory that are usually found in current curricula. At equilibrium Qx
is equal to the equilibrium constant Kx. When the temperature T is increased, then
Kx will increase for an endothermic reaction and decrease for an exothermic reaction.
According to Theorem 1, the equilibrium shifts to the right for an endothermic reaction
and to the left for an exothermic reaction. Qp is equal to the equilibrium constant Kp
for an gaseous equilibrium at constant T.When the chemical reaction in an equilibrium
system is frozen, an increase in pressure P will increase Qp if �v > 0 or decrease
Qp if �v < 0 since Qp = QxP

�v. Thus, Theorem 1 ensures that an increase in the
total pressure will shift the equilibrium to the side of the chemical reaction with a
smaller sum of coefficients in order to change Qx to properly adjust the value of Qp.
Alternatively, Kp = KxP�v. When increasing pressure while keeping T constant, Kp
remains constant while Kx decreases if �v > 0 or increases if �v < 0. To reach a
new equilibrium, Theorem 1 ensures that a backward reaction will occur to decrease
Qx to the new Kx for �v > 0 while a forward reaction will occur to increase Qx for
�v < 0. For the phase equilibrium between liquid water and water vapor, Qx = 1
and Qp = PH2O(g). This represents the special case for Eq. 5 since a change in phase
equilibrium does not change Qx. However, increasing PH2O(g) from an equilibrium
will cause Qp to become greater than Kp and thus more water vapor will convert to
liquid water to reach a new equilibrium. The above discussion essentially covers all
the contents in elementary courses concerning equilibrium.

4.2 A theoretical analysis of the gaseous equilibrium at constant T and P

With mathematics the general conditions can be derived for an equilibrium shift to
produce more of the added species. From Eq. 3 we can also obtain Eq. 16 when the
relevant reaction is frozen [15].

(
∂Qx

∂n j

)

ζ,ni

=
⎛

⎝
∏

i �= j

nvi
i

⎞

⎠ v j n
v j−1
j n−�v

T
n j

n j
+

⎛

⎝
∏

i �= j

nvi
i

⎞

⎠ n
v j
j (−�v)n−�v−1

T
nT
nT

= v j

n j
Qx − n j�ν

n jnT
Qx = Qx

v j − x j�ν

n j
=

(

∂Qx

∂n0j

)

ζ,n0i

(16)

Qx, xj, nT are always greater than zero. For an ideal gaseous system at constant
T and P for equilibrium, Qx = Kx. If a reacting species Aj in Eq. 2 is added into the
equilibrium system, Qx will be changed according to Eq. 16 and Qx deviates from Kx.

If Qx is increased by the addition, i.e.
(

∂Qx
∂n j

)

ζ,ni
> 0, the equilibrium will shift to the

left in Eq. 6 to decrease Qx according to Eq. 5, the general case of
(

∂Qx
∂ζ

)

ζ,ni
> 0 and

Theorem 1. If Qx is decreased by the addition, i.e.
(

∂Qx
∂n j

)

ζ,ni
< 0, the equilibrium

will shift to the right in Eq. 6 to increase Qx according to Eq. 5 or Theorem 1.
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Table 3 Equilibrium shifts obtained after adding a species j

No v j �ν x j
(

∂Qx
∂n j

)

ni
Equilibrium shift

1 >0 <0 Any allowed value >0 Backward �
2 >0 =0 Any allowed value >0 Backward �
3 >0 >0 <

v j
�ν >0 Backward �

4 >0 >0 >
v j
�ν <0 Forward ×

5 <0 <0 <
v j
�ν <0 Forward �

6 <0 <0 >
v j
�ν >0 Backward ×

7 <0 =0 Any allowed value <0 Forward �
8 <0 >0 Any allowed value <0 Forward �
� and × signify whether the traditional statement of Le Chatelier’s principle is true or false

If the product Aj (v j > 0) is added to the equilibrium, Qx increases when �ν = 0

or �ν < 0 since
(

∂Qx
∂n j

)

ζ,ni
> 0 from Eq. 16 when Aj is a product where v j > 0.

Thus the addition of product Aj will make Qx > Kx if the reaction is frozen. In order
to restore the equilibrium, Qx must decrease to Kx. According to Eq. 5 or Theorem
1 the equilibrium will shift to the left in Eq. 6 to decrease Qx. i.e. The addition of
the product Aj will shift the equilibrium to reduce the added product Aj. When the
product Aj is on the side of Eq. 6 with the larger sum of the coefficients (�ν > 0),

there will be two different possibilities.
(

∂Qx
∂n j

)

ζ,ni
> 0 is still maintained according

to Eq. 16 when x j <
v j
�ν

which means that the addition of a product will shift the

equilibrium to the reactant side to reduce the added product. However,
(

∂Qx
∂n j

)

ζ,ni
< 0

when x j >
v j
�ν

which means that the addition of product Aj will shift the equilibrium
to increase the added Aj, contradicting Le Chatelier’s principle. On the other hand, if
the added species Aj is a reactant (v j < 0), then Qx decreases when �ν ≥ 0 since
(

∂Qx
∂n j

)

ζ,ni
< 0 from Eq. 16 where v j < 0 and �ν ≥ 0. Thus the addition of reactant

Aj will make Qx < Kx if the reaction is frozen. In order to increase Qx the equilibrium
will shift to the right in Eq. 6 according to Eq. 5 or Theorem 1, i.e. the addition of
the reactant Aj will shift the equilibrium to reduce the added reactant Aj. When the
reactant side of Eq. 6 has a larger sum of the coefficients (�ν < 0), there will also be

two different possibilities. The inequality
(

∂Qx
∂n j

)

ζ,ni
< 0 is still held when x j <

v j
�ν

which means that the addition of a reactant will shift the equilibrium to the side that

reduces the amount of added reactant. However,
(

∂Qx
∂n j

)

ζ,ni
> 0 when x j >

v j
�ν

which

means that the addition of Aj will shift the equilibrium to increase the added Aj, also
contradicting Le Chatelier’s principle. The results are summarized in Table 3.

As can be seen in Table 3, the equilibrium will be displaced to produce more of
the added species at rows 4 and 6 thus contradicting Le Chatelier’s principle while
all the other rows indicate that the equilibrium shifts to reduce the added species, i.e.
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(
∂Qx
∂n j

)

ζ,ni
must be negative if the equilibrium is required to be displaced to produce

more added product (v j > 0). This is shown in row 4 where �ν > 0 and x j >
v j
�ν

are the required conditions. Note that both v j and �ν are positive. On the other hand,
(

∂Qx
∂n j

)

ζ,ni
must be positive if the equilibrium is required to be displaced to produce

more added reactant (v j < 0). This is shown in row 6 where �ν < 0 and x j >
v j
�ν

.
Note that in this case, both v j and �ν are negative. The common features necessary
for the equilibrium to shift to produce more of the added species, either a product or
a reactant, are x j >

v j
�ν

and
v j
�ν

> 0.
v j
�ν

> 0 means that the added species is on the
side of the chemical equation with the greater sum of coefficients. Since xj is positive,
it is only if

v j
�ν

> 0 that the condition x j >
v j
�ν

can be satisfied.
In Eq. 1, N2 is on the side with the larger sum of coefficients in the balanced

chemical equation and the equilibrium mole fraction of N2 calculated when w = 1
satisfies xN2 = vN2

�ν
= −1

−2 = 0.5, thus the subsequent addition of more N2 will result
in an equilibrium shift increasing the production of N2. The equilibriummole fractions
will satisfy xH2 = nH2

nT
= vH2

�ν
= −3

−2 > 1 if more H2 is produced by addingmore H2 to
the equilibrium system. But this condition can never be achieved since xH2 is always
less than 1. Without the detailed mathematics, the general condition for producing
more added species discussed here cannot be derived and therefore the result cannot
be readily understood.

It is recognized [5] that the equilibrium shift to produce more of the added N2 in
Eq. 1 occurs because H2 is diluted by the addition. It has been argued that Le Chate-
lier’s principle is only applicable to system where the change involves only a single
variable and not to systems, like the Haber process described in Eq. 1 when both the
concentrations of N2 and H2 are changed by an addition. As can be seen the conclu-
sion from such simple analysis is not helpful in developing the deep mathematical
treatment explained in this work. What is more, as shown from Table 1, Le Chate-
lier’s principle is not applicable even in cases where only a pair of variables, T and
q or P and V, are involved. The partial derivative used in the mathematical approach
considers only a pair of variables where all the other variables are kept as constants.
However, it is possible by using calculus to assemble all the partial derivatives to give a
complete view of the system which cannot be achieved using Le Chatelier’s principle.
Thus the rigorous mathematical approach deserves a place in modern chemistry while
following Chang [5], it is correct to state that Le Chatelier’s principle does not.

In Eq. 3 if we define the numerator Nx as

Nx =
N

∏

i=1

nνi
i (17)

and the denominator as

Dx = n�ν
T (18)

It can be shown that the results discussed above can also be obtained by application
of Theorem 2 obtained mathematically [15,16] for a gaseous equilibrium at constant
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T and P. Corollary v is a natural result of Theorem 1. Some mathematical aspects for
Theorem 2 are presented in “Appendix 2”.

Theorem 2 When adding a species j into a gas equilibrium system at constant T and
P, (a) the change in total number of moles nT caused by the addition would shift the
equilibrium to the side of the chemical equation for which the sum of coefficients is
the greater; (b) the change in the number of moles, n j , for species j caused by the
addition would shift the equilibrium to the side of reducing the amount of that species.

Corollary i to (a) On diluting an equilibrium system by adding an inert species, the
equilibrium will shift to the side of the chemical equation with the greater sum of
coefficients.

Corollary ii Effects (a) and (b) are synergistic if
v j

∑

i vi
= v j

�v
< 0 but opposite if

v j
�v

> 0. (a) is dominant and overrides (b) only if x j >
v j
�v

or
n0j

∑

i �= j n
0
i

>
v j

∑

i �= j vi
.

Corollary iii Both the total amount of moles in a system nT and the mole number for
j, n j , will be increased when species j is added into a system. The increase in nT (a)
and in n j (b) will each have the effect of changing Qx . Corollary ii applies to these
two effects for both (a) and (b).

Corollary iv Both nT and nk will be changed when the reaction goes forward or
backward. The change in (a) nT and in (b) nk will each change the mole fraction of
k. Corollary ii applies to these two effects for both (a) and (b).

Corollary v Both nT and ni of each species i will be changed when the reaction goes
forward or backward. (b) the effects on Qx of all changes in ni caused by the change
of reaction extent is synergistic but opposite to (a), the effect on Qx of change nT
caused by the same reaction extent change. The summed effect from (b) will always
override that from (a).

Corollary vi v j
�v

< 0 signifies that species j is on the side of the reaction equation
with smaller sum of coefficients while

v j
�v

> 0 signifies that species j is on the side of
the reaction equation with larger sum.

Corollary vii x j ≥ v j
�v

is valid only if
v j
�v

> 0 is true.
n0j

∑

i �= j n
0
i

>
v j

∑

i �= j vi
is valid

only if
v j

∑

i �= j vi
> 0.

If a product j (ν j > 0) is added in a gaseous equilibrium at constant T and P and if
the product side in the chemical equation has a smaller sum of coefficients (�ν < 0),
then the change in nT initiates a backward reaction (Theorem 2a) to reduce the amount
of j as does the change in nj (Theorem 2b). Here

ν j
�ν

< 0 since ν j > 0 and�ν < 0 and
as stipulated in Corollary ii of Theorem 2 the equilibrium displaces the reaction in the
same direction by the two effects. If the product side has a larger sum of coefficients
�ν > 0, then Theorems 2a and 2b will initiate opposite displacements as stated in
corollary ii since

ν j
�ν

> 0 because ν j > 0 and �ν > 0. As stated in Corollary ii, 2b
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is dominant if x j <
v j
�ν

and thus the equilibrium shifts to reduce the added species j
while 2a is dominant if x j >

v j
�ν

and the equilibrium shifts to increase j. The same
analysis applies when the added species is a reactant. Theorem 2 thus gives the same
results discussed above. The conclusions in Theorem 2 can be generalized to apply in
the examples given below.

For ideal gases, nT is related to the volume V of the system.

nT = kV ; where k = P

RT
(19)

Using the result from Eq. 19, Eq. 3 becomes

Qx =
∏N

i=1 n
νi
i

V�v

(
P

RT

)−�v

= Qc

(
P

RT

)−�v

(20)

where

Qc =
∏N

i=1 n
νi
i

V�v
(21)

Now the denominator in Eq. 3 becomes V�v in Eq. 21 and Theorem 2a becomes
corollary i. For example when an inert species is added into a gaseous equilibrium at
constant T and P, the numerator in Eq. 21 is not affected, thus there is no effect caused
by Theorem 2b. But Theorem 2a is still a real effect caused by the increase in the
denominator V�v. Adding inert gases to a chemical equilibrium at constant T and P,
only the volume of the system is increased by the addition. The equilibrium shift is in
fact aggravating the change in volume which is contrary to Le Chatelier’s principle.

Thus, even in systems where only one variable is changed with constant T and V,
the application of Le Chatelier’s principle can still be questionable. In fact there is
not a universal proof of Le Chatelier’s principle even when only a single variable is
changed. If an inert species is added into the gaseous equilibrium at constant V, the
variable changed in the system only involves the inert gas which does not participate
in the reaction. Even though the total pressure P and nT are affected by this addition,
they do not affect the equilibrium itself since the ratio of partial pressures for QP does
not change and Qp is not affected by the total pressure and nT because

QP = P�vQx = P�vn−�v
T

∏

i

ni = P�v

(
PV

RT

)−�v ∏

i

ni

=
(

1

RT

)−�v

∏

i
ni

(V )�v
= (QCRT)�v

QC is the reaction quotient in molarities. Thus, adding inert gases does not affect
the reaction quotient QP. However, Le Chatelier’s principle predicts an equilibrium
shift to reduce the total amount of moles nT which is wrong since adding inert gases
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Fig. 2 Agraphical representation for Eqs. 24, 30, and 31. It shows the relative positions of themole fraction
xN2 in rows 1, 2 and 3 in Table 2

to a chemical equilibrium at constant T and V cannot initiate an equilibrium shift.
For liquid reactions, V in Eq. 21 is constant whatever the value of nT if the amount of
solvent is not changed, thus only the effect caused by Theorem 2b needs be considered
and after adding a reactant or a product the equilibrium will shift to reduce that added
species.

4.3 Concentration and equilibrium shift

Although the equilibrium is shifted to producemore N2 from row 2 to row 3 in Table 2,
the concentration xN2 is decreased by the shift but increasedwith respect to the original
equilibrium concentrations shown in row 1 [16]. The concentration changes of N2 in
Eq. 1 shown in Table 2 are represented in Fig. 2.

The result is that the equilibrium is shifted to oppose the change in intensive variable
xN2 but to increase change in its conjugated extensive variable nN2. To reach the same
increase in xN2 when a chemical equilibrium exists in the system, more N2 needs to
be added than when no equilibrium exists, which means that the equilibrium enhances
the change in extensive variable nN2 [8,16,17].
Theoretical explanation

The results shown in Fig. 2 can be justified mathematically with the following
Eqs. 24, 30, and 31 [30]. From

x j = x j (n j , ζ ) = x j
[

n j , ζ(n j , Qx )
]

(22)

we obtain

(
∂x j
∂n j

)

ni ,Qx

=
(

∂x j
∂n j

)

ni ,ζ

+
(

∂x j
∂ζ

)

n j

(
∂ζ

∂n j

)

ni ,Qx

(23)
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If Qx is fixed at Kx, Eq. 23 will characterize an equilibrium system. The term
(

∂x j
∂n j

)

ni ,ζ
on the right of Eq. 23 means that x j is increased when Aj is added into an

equilibrium system when the system is frozen since

(
∂x j
∂n j

)

ni ,ζ

= 1 − x j
nT

> 0 (24)

Equation 24 is represented by the movement from (1) to (2) in Fig. 2. The term
(

∂x j
∂ζ

)

n j

(
∂ζ
∂n j

)

ni ,Qx
on the right of Eq. 23 represents the effect of the equilibrium shift

and is shown by the movement from (2) to (3) in Fig. 2. Since

Qx = Qx (n j , ζ ) = Qx [n j , ζ(n j ,�G)] = Qx [n j , ζ(n j , Kx )] (25)

We obtain

dQx =
(

∂Qx

∂n j

)

ni ,ζ

dn j +
(

∂Qx

∂ζ

)

ni

dζ (26)

For equilibrium dQx = 0 we obtain

(
∂ζ

∂n j

)

ni ,Qx

= −

(
∂Qx
∂n j

)

ζ,ni
(

∂Qx
∂ζ

)

ni

(27)

Equation 27 implies that
(

∂ζ
∂n j

)

ni ,Qx
and

(
∂Qx
∂n j

)

ζ,ni
have opposite signs since

(
∂Qx
∂ζ

)

ni
is positive. Inserting Eq. 27 into Eq. 23

(
∂x j
∂n j

)

ni ,Qx

=
(

∂x j
∂n j

)

ni ,ζ

+
(

∂x j
∂ζ

)

n j

(
∂ζ

∂n j

)

ni ,Qx

=
(

∂x j
∂n j

)

ni ,ζ

−
(

∂x j
∂ζ

)

n j

(
∂Qx
∂n j

)

ni ,ζ
(

∂Qx
∂ζ

)

ni

(28)

Since [15]

(
∂x j
∂ζ

)

n j

=
⎛

⎝
∂

∂ζ

n0j + v jζ
(
∑N

i=1 n
0
i

)

+ ζ�v

⎞

⎠

n j

=
(

ν j

nT
− n j�ν

n2T

)

=
(

ν j − �νx j
nT

)

= x j

(
ν j

n j
− �ν

nT

)

(29)

123



1854 J Math Chem (2015) 53:1835–1870

from Eqs. 16, 28, and 29 we obtain Eq. 30 by reference to Eq. 5.

−
(

∂x j
∂ζ

)

n j

(
∂Qx
∂n j

)

ni ,ζ
(

∂Qx
∂ζ

)

ni

= −v j − x j�ν

nT

Qx
ν j−x j�ν

n j
(

∂Qx
∂ζ

)

ni

= −Qx (v j − x j�ν)2

n jnT
(

∂Qx
∂ζ

)

ni

≤ 0 (30)

Equation 30 signifies that
(

∂x j
∂ζ

)

n j
and

(
∂ζ
∂n j

)

ni ,Qx=Kx
have opposite signs and

their product represents the counteraction to the change represented by Eq. 24. The
result from Eqs. 28 and 30 is shown by the movement from (2) to (3) in Fig. 2. The

term
(

∂x j
∂n j

)

ni ,Qx
on the left side of Eq. 28 is represented by the movement from (1)

to (3) in Fig. 2 [16] since

(
∂x j
∂n j

)

ni ,Qx

≥ 0 (31)

The conclusions implied in Fig. 2 can only be justified by the necessarymathematics
in Eqs. 24, 30 and 31. Equation 24 describes the movement from (1) to (2) in Fig. 2 for
the addition while the counteraction represented by Eq. 30 describes the movement
from (2) to (3) for the response of the reaction and Eq. 31 describes the movement
from (1) to (3) for the initial and final states. The equals sign in Eq. 31 indicates the
special case where (1) and (3) are at the same level. It can be seen in Fig. 2 that the
equilibrium shift does not refer to the movement from (2) to (3) since Qx is not equal
to Kx for (2). Only the movement from (1) to (3) refers to equilibrium shift since both
starting and ending states are equilibrium states and both states satisfy the condition
that Qx = Kx. However, the equilibrium shift from (1) to (3) only invokes a chemical
reaction from (2) to (3) since the reaction is frozen from (1) to (2).

The mathematics shows convincingly that even when the equilibrium is shifted to
produce more of the added species, the concentration of that species is decreased by
the shift from (2) to (3) in Fig. 2. This difficult concept can only be accepted vaguely
without the help of mathematics. For example there are many ambiguous concepts
expressed in the literature of chemical equilibrium because rigorous mathematics is
not introduced. We have come across statements from well-regarded authors such as
“if the number of moles of products in a balanced chemical equation for a gaseous
equilibrium system is not equal to the number of moles of reactants, adding more
reactant at constant pressure and temperature may further raise rather than partially
offset the increase in concentration of that reactant.” [5]. This apparently means that
xN2 was increased by the equilibrium shift characterized from (2) to (3) in Fig. 2
that produces more added N2 in Eq. 1 which is demonstrably wrong from the above
analysis. Indeed the correct statement should be that the equilibrium always partially
offsets the increase in concentration of the added species as shown in the process from
(2) to (3) in Fig. 2 but can never raise further the concentration of that species even
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though the added species is produced by such a shift. Or, consider this statement:
“One of the most reported limitations of the principle (referring to Le Chatelier’s
principle) has been its inability to appreciate that an increase in mass does not always
imply an increase in concentration.” [31]. In other words, the statement means that
the concentration of N2 could have been decreased by an increase in mass of N2 from
adding more N2.4 However, as shown by Eq. 24, the concentration of N2 is increased
as N2 is added (the mass of N2 is increased) when the reaction is frozen. What is
more, when considering the process from (1) to (3) in Fig. 2, this statement is clearly
wrong since Eq. 31 shows that the new equilibrium concentration xN2 after N2 is added
(the mass of N2 is increased) can never become lower than the original equilibrium
concentration. When the reaction shifts backward, nN2 is increased (the mass of N2
is indeed increased) and this effect increase xN2 instead of decrease xN2 as stated in
effect (b) in Theorem 2iv. The backward reaction reduces xN2 from (2) to (3) in Fig. 2
and Table 2 not because nN2 is increased (the mass of N2 is increased), but it is caused
by the increase in nT as stated in effect (a) in Theorem 2iv.

The discussion above shows that the results from mathematics are rigorous and
helpful. The qualitative presentation of the conclusions implied in Fig. 2 is often
obscure and confusing. i.e. the phrase “equilibrium shift” might refer to either the
movement from (1) to (3) or the result of counteraction from (2) to (3) in Fig. 2.
But using mathematical language, the meaning can be clearly expressed without any
ambiguity. The conclusions obtained from Eqs. 24, 30, and 31 and represented in
Fig. 2 can be generalized as demonstrated below.

An inert system at temperature T1 absorbs a definite amount of heat to reach a new
temperature T2. This is equivalent to the result represented by Eq. 24 or the movement
from (1) to (2) in Fig. 2. However, in an alternative systemwith a chemical equilibrium
of an endothermal or exothermal reaction at T1 which absorbs the same amount of heat,
the chemical equilibrium shift will reduce the change in T2 compared with the original
inert system. This is equivalent to the result represented by Eq. 30 or the movement
from (2) to (3) in Fig. 2. Note that under special conditions the equilibrium can shift
to such an extent that the final T2 is reduced to the initial T1 which is equivalent to the
case when the equal sign is valid in Eq. 31. But the equilibrium cannot shift further
to make T2 lower than T1 since the less than sign is not valid in Eq. 31. Thus, the
implications of Eqs. 24, 30, and 31 and Fig. 2 are general and can be summarized in
Theorem 3 for a pair of conjugated variables [8,16].

Theorem 3 The change of an intensive variable caused by changing its conjugated
extensive variable is smaller if chemical equilibrium is maintained than if no reaction
can take place in the system; (b) the changeof an extensive variable causedby changing
its conjugated intensive variable will be larger if chemical equilibrium is maintained

4 This statement is consistent with the fact that a backward reaction can be initiated by adding N2 such as
that given in Eq. 1. However the statement is not correct to imply that initiating a backward reaction signifies
that the concentration of N2 has been reduced by adding N2 and that in order to counteract the decrease in
concentration, the backward reaction has been initiated; or that the concentration of N2 is increased by the
addition and it initiates a backward reaction to reduce xN2 because the amount of N2 is increased. Confused
concepts like this occur because rigorous mathematical language has not been used.
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than if no reaction can take place in the system; (c) however, the theorem cannot be
applied to pair of non-conjugated variables.

Theorem 3 originates naturally from the mathematical discussion above. From
Eqs. 28 and 30 we obtain Eq. 32 for the intensive variable xj

∣
∣
∣
∣
∣

(
∂x j
∂n j

)

ni ,Qx

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

(
∂x j
∂n j

)

ni ,ζ

∣
∣
∣
∣
∣

(32)

and obtain Eq. 33 for the extensive variable nj corresponding to xj

∣
∣
∣
∣
∣

(
∂n j

∂x j

)

ni ,Qx

∣
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∣
∣
∣
≥

∣
∣
∣
∣
∣

(
∂n j

∂x j

)

ni ,ζ

∣
∣
∣
∣
∣

(33)

LikeEqs. 32 and 33, a pair of conjugated variables, intensiveZ and its corresponding
conjugated extensive z, can be expressed in partial derivatives as those inEqs. 34 and 35
[17].
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∣
∣
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∂z

∂Z

)

ζ

∣
∣
∣
∣
∣

(35)

Equations 34 and 35 imply that equilibrium always shifts to reduce the change in
intensive variables and enhance the change in extensive variables of a pair of conju-
gated variables [8]. The generalization in Eqs. 34 and 35 is validated by amathematical
principle implied in Eqs. 36–40 [15]. For a pair of conjugated variables Z and z

Z = f (z, ζ ) (36)

then

dZ =
(

∂ f

∂z

)

ζ

dz +
(

∂ f

∂ζ

)

z
dζ (37)

When dζ is caused by dz in Eq. 37, we obtain Eqs. 38 and 39. It has been shown that

Eq. 38 is true when
(

∂ f
∂z

)

ζ
is positive and 38′ is true when

(
∂ f
∂z

)

ζ
is negative for any

pair of conjugated variables [17].

(
∂ f

∂z

)

ζ

+
(

∂ f

∂ζ

)

z

(
∂ζ

∂z

)

Qx

≥ 0 (38)
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(
∂ f

∂z

)

ζ

+
(

∂ f

∂ζ

)

z

(
∂ζ

∂z

)

Qx

≤ 0 (38′)

From Eqs. 38 and 38′ we obtain Eq. 39 for positive values of
(

∂Z
∂z

)

ζ
and Eq. 39′ for

negative values of
(

∂Z
∂z

)

ζ
.

(
∂Z

∂z

)

ζ

≥ −
(

∂Z

∂ζ

)

z

(
∂ζ

∂z

)

Qx

(39)

(
∂Z

∂z

)

ζ

≤ −
(

∂Z

∂ζ

)

z

(
∂ζ

∂z

)

Qx

(39′)

For the extreme case where the equal sign is satisfied in both Eqs. 39 and 39′, we
obtain

(
∂Z

∂ζ

)

z

(
∂ζ

∂z

)

Z

(
∂z

∂Z

)

ζ

= −1 (40)

What is common in Eqs. 39 and 39′ is that
(

∂Z
∂z

)

ζ
and

(
∂Z
∂ζ

)

z

(
∂ζ
∂z

)

Z
have opposite

signs and this relationship remains in Eq. 40. Equation 40 is the case where the equal
sign is taken in both Eqs. 39 and 39′ and thus the discussion can only refer to Eq. 41
which is another form of Eq. 40.

(
∂Z

∂z

)

Qx

=
(

∂Z

∂z

)

ζ

+
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∂Z

∂ζ

)

z

(
∂ζ

∂z

)

Qx

= 0 (41)

In Eq. 41 the value of
(

∂Z
∂z

)

ζ
can be negative or positive [16,17]. However, as

indicated in Eqs. 39 and 39′,
(

∂Z
∂z

)

ζ
is always opposite in sign and larger in absolute

value than
(

∂Z
∂ζ

)

z

(
∂ζ
∂z

)

Qx
thus

(
∂Z
∂ζ

)

z

(
∂ζ
∂z

)

Qx
represents the counteraction to the

change represented by
(

∂Z
∂z

)

ζ
.

The terms
(

∂Qx
∂n j

)

ζ,ni
and

(
∂ζ
∂n j

)

ni ,Qx=Kx
have opposite signs from Eqs. 5 and 27.

Thus, if Qx has a maximum, then ζ must have a minimum. When adding a reactant j

if �ν > 0 (the added species on the side with smaller sum of coefficients),
(

∂Qx
∂n j

)

ζ,ni

is negative from Eq. 16 and
(

∂ζ
∂n j

)

ni ,Qx=Kx
is positive from Eq. 27. When adding

the reactant j if �v < 0,
(

∂Qx
∂n j

)

ζ,ni
is negative and

(
∂ζ
∂n j

)

ni ,Qx=Kx
is positive when

x j <
v j
�ν

. The reaction proceeds to consume the added reactant. According to Eq. 31,

xj increases as j is added. When x j >
v j
�ν

,
(

∂Qx
∂n j

)

ζ,ni
is positive and

(
∂ζ
∂n j

)

ni ,Qx=Kx
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is negative. The reaction proceeds to produce more of the added reactant. Thus at
x j = v j

�ν
, Qx has a minimum and ζ has a maximum as nj is increased if �v < 0 and

v j < 0 while Qx has a maximum and ζ has a minimum as nj is increased if �v > 0
and v j > 0 [30].

The fact that
(

∂ζ
∂n j

)

Qx=Kx
and

(
∂x j
∂ζ

)

n j
have opposite signs, signified by Eqs. 16, 27

and 29, is consistent with Theorem 3. The addition of j to a gaseous equilibrium at
constant T and P, whether j is a reactant or a product, will initiate an equilibrium dis-
placement that decreases the conjugated intensive variable xj stipulated in Theorem 3.

If
(

∂x j
∂ζ

)

n j
< 0 at the time of addition, a forward reaction is initiated to reduce the

intensive variable, with the result that
(

∂ζ
∂n j

)

Qx=Kx
> 0. Similarly, if

(
∂x j
∂ζ

)

n j
> 0

a backward reaction is initiated to reduce the intensive variable, with the result that(
∂ζ
∂n j

)

Qx=Kx
< 0 conforming with Theorem 3 and the fact that the two derivatives

have opposite signs. Since the relationship between xj and ζ in Eq. 29 is correlated
with the relationship between Qx and nj in Eq. 16, the condition that the forward

reaction increases xj

((
∂x j
∂ζ

)

n j
> 0

)

is correlated with the fact that the addition of j

leads to an increase in Qx (
(

∂Qx
∂n j

)

ζ,ni
> 0), both initiating a backward reaction. i.e.

xj correlates to Qx and ζ correlates to nj; indeed how xj increases with ζ correlates to
howQx increases with nj. Thus Theorem 3 is correlated with Theorem 2. For example,

if the added species j is a reactant (v j < 0), then from Eq. 29
(

∂x j
∂ζ

)

n j
< 0 when

v j
�ν

< 0, and when both
v j
�ν

> 0 and x j <
v j
�ν

. A forward reaction will result from
both Theorems 3 and 2, i.e. the addition of reactant j results in a forward reaction

with
(

∂ζ
∂n j

)

Qx=Kx
> 0. On the other hand

(
∂x j
∂ζ

)

n j
> 0 when

ν j
�ν

> 0 and x j >
v j
�ν

,

and then a backward reaction will result from both the two theorems resulting in
(

∂ζ
∂n j

)

Qx=Kx
< 0. The same discussion applies if j is a product. Equation 29, which

is similar to Eq. 72 in Appendix 2, can be derived from Eq. 42.5

x j (ζ + dζ ) = n j + ν j dζ

nT + �νdζ
= x j

1 + ν j dζ

n j

1 + �νdζ
nT

(42)

The relationship between Theorems 2 and 3 becomes even more explicit with the
following treatment which is similar to that detailed in “Appendix 2”. xj can be reduced
by decreasing its numerator nj or increasing its denominator nT. Let the added species
j be a product where v j > 0. From Eq. 42 the forward reaction will increase the
numerator nj and decrease the denominator nT of xj when �ν < 0 or

ν j
�ν

< 0, so that
both the numerator and denominator of xj will change to increase xj by increasing ζ,

5 The correct form of Eq. 21 in Ref. [16] should be Eq. 42 presented here. We also note that the last terms
in Eqs. 94 and 95 of Ref. [15] should be (λai − bi )

2 ≥ 0 and
∑

i (λai − bi )
2 ≥ 0, respectively.
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resulting in
(

∂x j
∂ζ

)

n j
> 0.Thus a backward reaction is anticipated frombothTheorem3

and corollaries ii and iv of Theorem 2, resulting in
(

∂ζ
∂n j

)

Qx=Kx
< 0. By Eq. 42 the

change in numerator dominates the change in xj when x j <
v j
�ν

if �ν > 0 or
v j
�ν

> 0,

conforming to Theorem 2 and resulting in
(

∂x j
∂ζ

)

n j
> 0. According to Theorem 3,

xj needs to be reduced. A backward reaction is thus initiated since it reduces the

numerator of xj, resulting in
(

∂ζ
∂n j

)

Qx=Kx
< 0. The validity of Theorems 2 and 3 can

similarly be verified if the added species j is a reactant where v j < 0.
As stated in Theorem 2, whether the added species j is a product (v j > 0) or a

reactant (v j < 0), the change in denominator has an dominant effect on xj when

x j >
v j
�ν

, resulting in
(

∂x j
∂ζ

)

n j
< 0 for the added product and

(
∂x j
∂ζ

)

n j
> 0 for

the added reactant. According to Theorem 3, a forward reaction will be initiated

when the added species is a product, resulting in
(

∂ζ
∂n j

)

Qx=Kx
> 0, and a backward

reaction when the added species is a reactant, resulting in
(

∂ζ
∂n j

)

Qx=Kx
< 0, since

xj is needed to be decreased by increasing its denominator nT. Thus, the equilibrium
shifts to increase the amount of j when j is added into a chemical equilibrium system if
x j >

v j
�ν

.Whether the equilibrium is shifted to reduceor increase the added species j, xj
is always decreased (Theorem 3). The reaction direction anticipated from Theorems 2

and 3 is the same and the sign of
(

∂ζ
∂n j

)

Qx=Kx
is opposite to that of

(
∂x j
∂ζ

)

n j
in all

circumstances.
When the intensive variable in Theorem 3 is referenced to the chemical potential

μj for species j, we obtain

μ j = μ0
j (T ) + RT ln Pj (43)

where μ0
j (T ) is the standard chemical potential at T and xj is the mole fraction for

species j. From Eqs. 29 and 44 we obtain Eq. 45.

Pj = Px j (44)
(

∂Pj

∂ζ

)

P,ni

= P
v j − x j�v

nT
(45)

As can be seen fromEqs. 43 to 45, the counteraction forμj (Theorem3) is equivalent
to the counteraction for Pj, the partial pressure for species j. When x j >

v j
�ν

if v j > 0

and �ν > 0, the effect from nT by
(

−P
x j�v

nT

)

is dominant according to Theorem 2

and then Eq. 46 is valid.

(
∂Pj

∂ζ

)

P,ni

< 0 (46)
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Equation 46 signifies that a forward reaction can reduce Pj and also μj, i.e. adding
a product j at these conditions will result in an equilibrium shift to produce more j
according to Theorem 3b in reducing P j . When x j >

v j
�ν

, if v j < 0 and �ν < 0, then
Eq. 47 pertains

(
∂Pj

∂ζ

)

P,ni

> 0 (47)

Equation 47 means that a backward reaction can reduce Pj. Thus adding a reac-
tant j at these conditions will result in an equilibrium shift to produce more j which
conforms to Theorem 3. In the above cases, the equilibrium shift changes direction at
x j = v j

�ν
> 0.

Since

x j = n j

nT
= v j

�ν
> 0 (48)

using Eqs. 48–50 we obtain Eq. 51.

n j = n0j + v jζ (49)

nT =
(

∑

i

n0i

)

+ �νζ (50)

n0j
∑

i �= j n
0
i

= v j
∑

i �= j vi
> 0 (51)

From Eq. 51 we obtain

n0j
n0j + ∑

i �= j n
0
i

= v j

v j + ∑

i �= j vi
> 0 (52)

or

x j = n0j
n0j + ∑

i �= j n
0
i

= v j

v j + ∑

i �= j vi
> 0 (53)

Equation 48 is expressed inmole fractionswhile Eq. 51 is expressed using the initial
number of moles but the two equations are essentially equivalent (a consequence of
Theorem 5 from Ref. [15]). The equilibrium shift will go in different directions when
xj is smaller or larger than the value indicated in Eq. 53 or when the initial mole
ratio is smaller or larger than the value indicated in Eq. 51. In Eq. 1 the equilibrium

changes direction at w = 1 confirming the result shown in Eq. 51 as w
1 = n0N2

n0H2
+n0NH3

=
vN2

vNH3+vH2
= −1

2−3 = 1 which is equivalent to Eq. 48 as x j = v j
�v

= 0.5.
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The condition for
(

∂Qx
∂ζ

)

ni
= 0 (Corollary 1 in Theorem 1) and for maximizing

the mole fraction of a target product (Theorem 6 in [15]) is

n j

ni
= v j

νi
> 0 (54)

Equation 55 (relevant to Theorem 5 in [15]) can be obtained from 54 using Eq. 49.

n0j
n0i

= v j

νi
> 0 (55)

In fact if the initial mole ratio satisfies Eq. 55, then Eq. 54 is guaranteed to be
valid at any time with any value of ζ as shown by Eq. 56. i.e. if the ratio of the initial
amounts of moles for the reacting species is equal to the ratio of their coefficients in
the balanced chemical reaction, then this will guarantee that the ratio of the amounts
of moles at any time will be equal to the ratio of their coefficients.

n j

ni
= n0j + v jζ

n0i + νiζ
= v j

νi
= n0j

n0i
(56)

Equation 54 is correlated with Eq. 48 by Eq. 52 and there are a number of similar
correlations in the mathematics related with chemical equilibrium [16]. As shown
above, many of the relationships in chemistry can only be understood via detailed
mathematical analysis.

5 Conclusions

Le Chatelier’s principle has been successfully applied to many cases in chemistry.
However, it can fail in a number of situations. It is shown in Sect. 2 that this failure
cannot be corrected within the original framework of the principle and it is then
confirmed by a numerical evaluation in Sect. 3 that the application of the principle
fails for gaseous reaction systems at constant T and P but might be less problematic
for systems at constant volume. Finally a general theoretical system is developed
based on the principles developed in this series of publications [15–17]. It is pointed
out through Eq. 15 that there are often differences between mathematical chemistry
and pure mathematics. However, rigorous mathematical analysis is usually relevant to
chemistry.

It must be realized that Le Chatelier’s principle was not created in a formal math-
ematical context as mathematical knowledge in the late nineteenth century was not
as advanced as now. There have been recent attempts to reformulate the principle [8]
but such efforts lead to completely different sets of rules. The lesson from this work
is that the popularly accepted view of the merits of Le Chatelier’ s principle deserves
a significant and thorough reevaluation.

It is surprising that there remain difficulties in presenting equilibrium concepts
in modern chemistry [5]. It is even more surprising when it is considered that the
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difficulties can readily be overcome by introducing a disciplined elementary mathe-
matical treatment in elementary chemistry courses but even so this has not been done,
especially in the field of chemical education, or indeed in the classroom [5]. All the
mathematical tools applied in this work are appropriate for the equilibrium theory
so that it is surprising that such treatment has not yet been introduced into the edu-
cation system. In fact, more rigorous and abstract understanding should be the real
pursuit of scientific research and elementary chemistry needs to bemodernized beyond
taxonomy and rote learning by introducing more mathematics.

Some chemists reject theoretical and mathematical treatments since they consider
chemistry as an experimental science [32]. Indeed some chemists consider that avoid-
ing mathematics has advantages in gaining in concept understanding, motivation, and
are not put off the subject by ‘difficult’ mathematics. Indeed there have been attempts
to rewrite Le Chatelier’s principle in different ways without mathematics in order to
conceal its inadequacies. However, mathematics helps to build a more rigorous, sys-
tematic, general, and abstract understanding.6 Concepts developed frommathematical
methods can only be understood from mathematics. It is shown from this work that
conceptual understanding without mathematical analysis usually leads to superficial
appreciation. There are many parts of chemistry like those introduced in this paper in
which only a mathematical treatment can lead to real understanding [33,34].

Appendices

Appendix 1: Another proof for Theorem 1 with gaseous species on both sides of
the chemical equation

It has been pointed out previously [15] that there is a mistake in the Proof of Theorem
1 by Katz [10]. The proof below corrects that mistake. Since

n21v
2
2 + n22v

2
1 ≥ 2v1v2n1n2 (57)

We obtain

v21

n1
+ v22

n2
≥ (v1 + v2)

2

n1 + n2
(58)

Equation 58 can also be obtained when Eq. 59 is valid.

n2
n1

= v2

v1
> 0 (59)

v21

n1
+ v22

n2
= (v1 + v2)

2

n1 + n2
(60)

6 For example an anonymous reviewer correctly commented: “mathematical knowledge is generally highly
valued in chemistry, and there aremany research groupswho apply it effectively and successfully.” and “The
computer-based simulation and design tools used by practicing chemists and chemical engineers require
significant mathematical/computational knowledge.”
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v1 and v2 in Eq. 59 are either both positive or negative since n1 and n2 are both
positive. If v1 and v2 have opposite signs, the equal sign should be excluded in Eq. 58.
Equation 60 can also be derived from Schwarz inequality 61.

N
∑

i=1

a2i

N
∑

i=1

b2i ≥
(

N
∑

i=1

aibi

)2

(61)

Inequality 61 is equivalent to Eq. 62 [15].

N
∑

i=1

N
∑

j>i

(aib j − a jbi )
2 ≥ 0 (62)

From Eq. 62 it is clear that the equals sign in Eq. 61 is valid when Eq. 63 is satisfied
for all i and j. FromEq. 63we know that the equals sign can be included in the Schwarz
inequality 61 when the signs for ai and bi are the same, but not otherwise.

ai
bi

= a j

b j
, i, j = 1, 2, 3, . . . , N (63)

For example Eq. 61 is valid together with Eq. 64, i.e. including the equal sign.

ai > 0, bi > 0, i = 1, 2, 3, . . . , N (64)

When the signs for ai and bi are mixed, i.e. if some ai has the same sign as its
counterpart bi while another aj has the opposite sign to its counterpart bj, Eq. 63
cannot be satisfied for all i and j, thus the equals sign in Eq. 61 should be excluded.

It can be demonstrated that Eq. 58 is one form of the Schwarz inequality shown by
Eq. 61. If we define

ai = |vi |√
ni

, bi = √
ni (65)

note ni > 0. Equation 61 becomes

N
∑

i=1

∣
∣
∣
∣

vi√
ni

∣
∣
∣
∣

2 N
∑

i=1

ni ≥
(

N
∑

i=1

|vi |
)2

(66)

Rearranging Eq. 66 we obtain Eq. 67 which is in a similar form to Eq. 58.

N
∑

i=1

v2i

ni
≥

(
∑N

i=1 |vi |
)2

∑N
i=1 ni

(67)

Equation 67 is obtained by Katz [10] using mathematical induction. Both Eqs. 68
and 69 conform to the result implied by Eq. 67.
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Np
∑

i=1

v2pi

n pi
≥

(
∑Np

i=1 vpi

)2

∑Np
i=1 n pi

(68)

N=Nr∑

i=1

v2ri

nri
≥

(
∑N=Nr

i=1 vri

)2

∑N=Nr
i=1 nri

(69)

If there are gaseous species on both sides of the chemical equation, we obtain Eq. 70
since vp and vr have opposite signs.

N=Np+Nr
∑

i=1

v2i

ni
>

(
∑N=Np+Nr

i=1 vi

)2

∑N=Np+Nr
i=1 ni

= �v2

nT
(70)

The validity of Eq. 70 can best be demonstrated by comparing it with Eq. 67 which
is consistent with Eqs. 68 and 69 and was proposed by Katz [10], by using Eq. 71, i. e.
because of Eq. 71, the equal sign in Eq. 70 has been excluded when there are gaseous
species on both side of chemical equation.

N
∑

i=1

|vi | >

N
∑

i=1

vi (71)

Equation 70 conforms to Theorem 1 for the case when there are gaseous species
on both sides of the chemical equation. It should be noted that Eq. 70 is correct in
chemistry but not in mathematics since in the latter ni can be negative.

Appendix 2: Relevant mathematics for some aspects of Theorem 2

From Eq. 3 we obtain Eq. 72 for adding species j into a chemical system.

Qx (n j + dn j ) =
(

1 + v j dn j
n j

)
∏N

i=1 n
νi
i

(

1 + �vdn j
nT

)

n�ν
T

(72)

If we ignore the change in denominator Dx in Eq. 72, we obtain Eq. 74.

Qx (n j + dn j )
∣
∣
Dx

=
(

1 + v j dn j

n j

)

Qx (n j ) (73)

or

�Qx |Dx = [

Qx (n j + dn j ) − Qx (n j )
]∣
∣
Dx

= v j dn j

n j
Qx (n j ) (74)
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If we ignore the change in numerator Nx in Eq. 72, we obtain Eq. 76.

Qx (n j + dn j )
∣
∣
Nx

= 1
(

1 + �vdn j
nT

)Qx (n j )

=
(

1 + �vdn j

nT

)−1

Qx (n j ) =
(

1 − �vdn j

nT

)

Qx (n j ) (75)

or

� Qx |Nx
= [

Qx (n j + dn j ) − Qx (n j )
]∣
∣
Nx

= −�vdn j

nT
Qx (n j ) (76)

Parts (a) and (b) of Theorem 2 can be discussed along with Eq. 72. The discussion
below is relevant to corollary ii of Theorem 2. From Eqs. 74 and 76, �Qx |Dx

and
� Qx |Nx

have the same sign when v j has an opposite sign to �v, i.e. for the added
species j on the side of chemical reaction with the smaller sum of coefficients. Thus
the effects described in parts (a) and (b) shift the equilibrium in the same direction
when

v j
�v

< 0. But if v j and �v have the same sign, �Qx |Dx
and � Qx |Nx

have
opposite signs and the effects described in parts (a) and (b) shift the equilibrium in
opposite directions. �Qx |Dx

overrides � Qx |Nx
when Eq. 77 is satisfied, i.e. the

effect specified in Theorem 2b is dominant.

∣
∣
∣
∣

v j dn j

n j
Qx (n j )

∣
∣
∣
∣
>

∣
∣
∣
∣

�vdn j

nT
Qx (n j )

∣
∣
∣
∣

(77)

When both v j and �v are negative, we obtain Eqs. 78 and 79 from 77.

v j

n j
<

�v

nT
(78)

or

x j = n j

nT
<

v j

�v
> 0 (79)

Thus, as specified in Theorem 2ii, the effect described by Theorem 2b is dominant
when x j <

v j
�v

> 0. Similarly, the effect described by Theorem 2a is dominant when
x j >

v j
�v

> 0. When both v j and �v are positive, a similar discussion can be invoked
and the result is specified by Theorem 2ii.

Appendix 3: A detailed mathematical account of conjugated variables

The common feature of conjugated variable pairs for xj and nj, Cj and nj, or P and V
in Eqs. 80–82 [17] is that they contain a square term in
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(
∂x j
∂ζ

)

ni

(
∂Qx

∂n j

)

ζ,ni

,

(
∂C j

∂ζ

)

V,ni

(
∂QC

∂n j

)

V,ζ

, or

(
∂P

∂ζ

)

T,V

(
∂QP

∂V

)

T,ζ

,

such as (ν j − �νx j )2 in Eq. 80, (ν j )
2 in Eq. 81, and (�ν)2 in Eq. 82.

(
∂x j
∂n j

)

T,P,Qx=Kx

=
(

∂x j
∂n j

)

ζ

−
(

∂x j
∂ζ

)

ni

(
∂Qx
∂n j

)

ζ,ni
(

∂Qx
∂ζ

)

ni

= 1 − x j
nT

− ν j − �νx j
nT

Qx

(
ν j−�νx j

ni

)

(
∂Qx
∂ζ

)

n0i

≥ 0 (80)

(
∂C j

∂n j

)

T,V,QC=KC

=
(

∂C j

∂n j

)

ζ

−
(

∂C j

∂ζ

)

V,ni

(
∂QC
∂n j

)

V,ζ
(

∂QC
∂ζ

)

V,ni

= 1

V
− ν j

V

QC
ν j
n j

QC

N∑

i=1

ν2i
ni

≥ 0 (81)

(
∂P

∂V

)

T,Qp=KP

=
(

∂P

∂V

)

T,ζ

+
(

∂P

∂ζ

)

T,V

(
∂QP
∂V

)

T,ζ
(

∂QP
∂ζ

)

T,V

= − P

V
− �νP

nT

−�νQP
V

QP

N∑

j=1

ν2j
n j

≤ 0 (82)

In Fig. 3, the shift from (1) to (2′) represents
(

∂P
∂V

)

T,ζ
in Eq. 82, while the shift from

(2′) To (3′) is represented by the term
(

∂P
∂ζ

)

T,V

(
∂QP
∂V

)

T,ζ
(

∂QP
∂ζ

)

T,V

, and from (1) to (3′) is the

resultant derivative
(

∂P
∂V

)

T,Qp=KP
. (4′) is a state inaccessible to the system which is

indicated by ≤ 0 in Eq. 82.
On the other hand, xk and nj are not a pair of conjugated variables because there is

not a square term in
(

∂xk
∂ζ

)

n j

(
∂Qx
∂n j

)

ζ,ni
as shown in Eq. 83.

(
∂xk
∂n j

)

T,P,Qx=Kx

=
(

∂xk
∂n j

)

ζ

−
(

∂xk
∂ζ

)

n j

(
∂Qx
∂n j

)

ζ,ni
(

∂Qx
∂ζ

)

ni

= −xk
nT

− νk − �νxk
nT

Qx

(
ν j−�νx j

n j

)

(
∂Qx
∂ζ

)

n0i

(83)
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Fig. 3 A pictorial
representation of the derivatives
in Eq. 82

(1)

(2')

(3')

(4')

A result similar to Eq. 82 can also be derived from thermodynamics [8]. For exam-
ple, function A is defined in Eq. 84 for a system with entropy S.

A(S, V, ζ ) =
∑

i

νiμi (84)

At equilibrium, we have

d A =
(

∂A

∂S

)

ζ,V
dS +

(
∂A

∂V

)

S,ζ

dV +
(

∂A

∂ζ

)

S,V
dζ = 0 (85)

From Eq. 85 we obtain Eq. 86.

(
∂ζ

∂V

)

S,A
= −

(
∂A
∂V

)

S,ζ
(

∂A
∂ζ

)

S,V

(86)

Equation 88 is obtained from Eq. 87.

dU = TdS − PdV + Adξ (87)
(

∂P

∂ζ

)

S,V
= −

(
∂A

∂V

)

S,ζ

(88)

From Eq. 86 and 88 we obtain Eq. 89 from P = P[S, V, ζ(S, V, A)].
(

∂P

∂V

)

S,A
=

(
∂P

∂V

)

S,ζ

+
(

∂P

∂ζ

)

S,V
·
(

∂ζ

∂V

)

S,A

=
(

∂P

∂V

)

S,ζ

+
(

∂A

∂V

)

S,ζ

(
∂A
∂V

)

S,ζ
(

∂A
∂ζ

)

S,V

(89)
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There is a square term
[(

∂A
∂V

)

S,ζ

]2
in Eq. 89. From Eq. 90 [17] it can be seen that

the term
(

∂P
∂ζ

)

S,V
·
(

∂ζ
∂V

)

S,A
is positive in Eq. 89. It should be noticed that

(
∂P
∂V

)

S,ζ
is

negative. Although it can be proved from thermodynamics that the signs for
(

∂P
∂V

)

S,ζ

and
(

∂P
∂ζ

)

S,V
·
(

∂ζ
∂V

)

S,A
are opposite, only mathematics can prove Eq. 91.

(
∂A

∂ζ

)

S,V
> 0 (90)

∣
∣
∣
∣
∣

(
∂P

∂V

)

S,ζ

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣
∣

(
∂P

∂ζ

)

S,V
·
(

∂ζ

∂V

)

S,A

∣
∣
∣
∣
∣

(91)

In fact any pair of variables in a thermodynamic function, such as S and T, P and
V, μi and ni, and A and ζ in Eq. 87 for internal energy U or for other thermodynamic
functions as enthalpy H, Helmholtz free energy F, Gibbs free energy G are conjugated
variables.

Appendix 4: Symbols used

P pressure of the system.
V volume of system.
T temperature of the system.
q heat absorbed in the system.
w in Eq. 1 is the initial mole number of N2.
t time.
R in Eq. 19 is the universal gas constant.
Ai in Eq. 2 is the chemical formula for species i in chemical reaction.
i and j indices for species in a system. r and p are used for reactant and product
respectively . N is the total number of species in the reacting system. Nr and Np
are the total number of reactants and products, respectively.

ζ the reaction extent. It is defined as ζ = ni−n0i
vi

along with Eq. 1.
vi the coefficient for species i in a balanced chemical reaction. Its value is positive
for product and negative for reactant
�v the sum of the coefficients for all species in a balanced chemical reaction.

�v =
∑

i

vi =
∑

p

vp −
∑

r

|vr |.

ni the amount of species i while n0i is for initial mole number. ni = n0i + viξ .
nT total amount of all species in chemical reacting system. nT = ∑

i
ni = �vζ +

∑

i
n0i .

xi mole fraction for species i. xi = ni
nT

.
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Qx reaction quotient expressed in mole fractions. Qx = ∏

i x
vi
i = n−�v

T

∏

i n
vi
i .

It is a unitless quantity. At equilibrium Qx = Kx. When the reaction quotient
is expressed in partial pressure, Qp is used and the corresponding equilibrium
constant is Kp. Qc is expressed in molarities as shown in Eq. 21. Nx and Dx are

related to Qx and defined as Nx = ∏

i n
vi
i , Dx =

(
1
nT

)�v

.

Kx an equilibrium constant formulated from mole fractions for gaseous chemical
reaction at constant T and P.
Kp an equilibrium constant formulated from partial pressures for chemical reac-
tions at constant T.
G Gibbs energy.
μ j the chemical potential for species j. μ0

j (T ) is the standard chemical potential
at temperature T.
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